

В последнее время и в странах Европы, и у нас в России при проектировании и строительстве объектов разного функционального назначения складывается устойчивая тенденция к уменьшению толщины напольных покрытий внутренних помещений. Это создает существенные трудности при проектировании систем канализации, в частности при устройстве трапов в сантехнических помещениях. Понятно, что разместить в полу с толщиной покрытия 80 или 60 мм трап с высотой гидрозатвора 60 мм невозможно! Поэтому многие производители канализационного оборудования, следуя запросам строителей, начали производить трапы и лотки с высотой гидрозатвора равной 30 мм, совершенно не задумываясь о том, что системы внутренней канализации практически во всех странах рассчитываются из условия высоты гидрозатворов, равной 50-60 мм! Например, в Германии и Австрии трапы и лотки с высотой гидрозатвора, равной 30 мм, не соответствуют нормам этих стран. По этой причине многие производители идут на различные ухищрения: предлагают трапы (лотки) с двумя расположенными друг за другом гидрозатворами высотой по 30 мм каждый и заявляют, что «30 + 30» дают в сумме 60 мм. Следует отметить, что исследования, проведенные А. Я. Добромысловым по определению работоспособности систем канализации, доказали полную несостоятельность данного утверждения.

Остается задать извечный русский вопрос: что делать?

Во-первых, мы не можем изменить данную тенденцию. Нет смысла доказывать, что срыв гидрозатвора только на одном маленьком трапе может привести к отравлению людей во всем здании. Доказано, что вспышки гепатита А в наших городах напрямую связаны с неисправной системой канализации; что один пересохший трап в санузле квартиры в Гонконге послужил причиной заболевания птичьим гриппом всех жильцов этого дома (загрязненный воздух из трапа по системе вентиляции попадал во все помещения).

Во-вторых, объяснять что-то строителям – только портить себе нервную систему, они (строители) знают все лучше всех!

А когда объект начинает эксплуатироваться – возникает второй извечный вопрос: кто виноват?

Например, к нам обратилась служба эксплуатации гостиницы «Бега» (Москва, Беговая аллея, 11) по причине бессистемного срыва гидравлических затворов у ванн в разных номерах гостиницы, на разных этажах и присоединенных к разным канализационным стоякам. При обследовании данного объекта нашими специалистами было установлено, что ванны подключались к канализации через сифоны с высотой гидрозатвора менее 50 мм. После замены нестандартных сифонов на сифоны для ванн HL500-6/4" производства фирмы HL Hutterer & Lechner GmbH (Австрия) проблема была устранена.

В этом случае все обошлось «малой кровью», заменили сифоны у ванн. Но как поменять

трапы или лотки, которые вмонтированы в полы душевых или сантехнических помещений? Следовательно, уже на стадии проектирования мы должны знать, какое оборудование (трапы, лотки, сифоны) будет применяться, и так спроектировать нашу систему канализации, чтобы она работала даже с приборами с высотой гидрозатвора, равной 30 мм.

Отвечаем на вопрос «что делать?»

Вся надземная часть системы канализации здания зависит только от высоты гидрозатворов санитарно-технических устройств, подключенных к этой системе. Срыв гидрозатвора происходит, когда величина разрежения в канализационном стояке становится равной либо чуть превышает геометрическую высоту гидрозатвора. То есть если к канализационному стояку подключены приборы с высотой гидрозатвора, равной 30 мм, то срыв данного гидрозатвора произойдет при возникновении разрежения в канализационном стояке, равном 30 мм водяного столба. Вывод: возникающее в стояке разрежение должно быть меньше этой величины.

Проектировать систему канализации мы можем по-разному, это процесс творческий. Первый вариант – мы можем подключить к одному стояку все приборы, с высотой гидрозатвора и 60, и 30 мм. В этом случае необходимо определить пропускную способность этого стояка, при которой разрежение будет меньше 30 мм водяного столба. Второй вариант – разделить стояки. К одному присоединим приборы с высотой гидрозатвора 60 мм, а к другому только приборы

с высотой 30 мм. В этом случае первый стояк рассчитываются как всегда (на высоту гидрозатворов 50–60 мм); а второй будем рассчитывать на разрежение меньше 30 мм водяного столба.

У каждого из этих вариантов есть свои достоинства и недостатки. В первом случае для уменьшения величины разрежения в стояке, чтобы она не превышала 30 мм водяного столба, можем увеличить диаметр стояка. Например, вместо диаметра 110 мм принять диаметр 160 мм. Но тогда и отводящий трубопровод (выпуск) будет иметь диаметр не менее 160 мм, что может создать дополнительные трудности для обеспечения режимов самоочищения из-за малых расходов стоков. Во втором случае будет два стояка диаметром по 110 мм (в зависимости от расчетных расходов), т. е. возрастут затраты на материал (трубы и соединительные детали). Зато выпуск можно сделать диаметром 110 мм и расходов хватит для обеспечения режимов самоочищения в соответствии с п. 19.1 СП 30.13330.2020.

При проектировании систем канализации мы всегда пользуемся табличными значениями максимальной пропускной способности канализационного стояка (табл. К1–К8 СП 30.13330.2020) в зависимости от диаметра поэтажного отвода, угла присоединения поэтажного отвода к стояку, от рабочей высоты канализационного стояка. А также – от величины разрежения в канализационном стояке! Максимальная величина разрежения в канализационном стояке регламентирована п. 19.2 СП 30.13330.2020, а именно: «Допустимая величина разрежения (Др) в вентилируемых и невентилируемых канализационных

Таблица 1

Диаметр поэтажного отвода, мм	Угол присоединения поэтажного отвода, град.	Максимальная пропускная способность вентилируемого канализационного стояка, л/с						
		ПП		ПВХ		SML		
		Ø50 мм	Ø110 мм	Ø50 мм	Ø110 мм	DN50	DN100	
50	45,0	0,78	5,58	0,78	5,44	0,68	5,54	
	60,0	0,68	4,89	0,68	4,78	0,59	4,87	
	87,5	0,47	3,40	0,47	3,33	0,40	3,40	
110	45,0		3,95		3,87		3,83	
	60,0		3,47		3,40		3,36	
	87,5		2,41		2,37		2,35	

Примечание:

- 1. В таблице приведены данные для труб ПП 110×2,7 мм; ПВХ 110×3,2 мм; SML 110×3,5 мм; ПП 50×1,8 мм; ПВХ 50×1,8 мм; SML 50×3,5 мм.
- 2. Максимальная пропускная способность указана для стояков высотой более $90D_{cm}$. Если высота канализационного стояка меньше $90D_{cm}$, то табличные значения следует увеличить в $(90D_{cm}/L)^{0,298}$ раз.
- 3. При применении на канализации шумопоглощающих толстостенных труб данной таблицей пользоваться нельзя, т. к. расчет ведется по внутреннему диаметру трубопроводов.

стояках не должна превышать $0.9h_3$, где h_3 – высота наименьшего из гидравлических затворов санитарно-технических приборов, присоединенных к канализационному стояку».

Другими словами, при расходах, равных максимальным значениям пропускной способности, приведенным в табл. К1–К8 СП 30.13330.2020, в канализационных стояках возникает максимально допустимое разрежение равное $0.9h_3=0.9\cdot60=54$ мм.

В связи с вышеизложенным, при проектировании систем канализации с подключением приборов с высотой гидрозатвора равной 30 мм пользоваться данными табл. К1–К8 СП 30.13330.2020 нельзя!

Следовательно, надо определить максимальную пропускную способность канализационного стояка в зависимости от максимально допустимого разрежения, равного $0.9h_3 = 0.9 \cdot 30 = 27$ мм, диаметра поэтажного

отвода, угла присоединения поэтажного отвода к стояку, рабочей высоты канализационного стояка.

Для этого воспользуемся регламентами по расчету пропускной способности канализационных стояков, которые приведены в п. 19.4, 19.5 СП 30.13330.2020, а именно: «19.4. Максимальную пропускную способность вентилируемого канализационного стояка при другой высоте гидравлических затворов следует определять по формуле:

$$q_{s} = 0.0297 \cdot \Delta \rho^{0.596} \left(1 + \cos\alpha_{0}\right) D_{cT}^{2} \left(\frac{90D_{cT}}{L}\right)^{0.298} \left(\frac{D_{cT}}{d_{OTB}}\right)^{0.423}$$

где q_s – расчетный расход стоков, M^3/c ;

Δр – допустимая (максимальная) величина разрежения в стояке, мм вод. ст. (0,9h₃);

 α_0 — угол присоединения поэтажного отвода к стояку, град.;

 $D_{c\tau}$ – внутренний диаметр стояка, м;

Таблица 2

Высота	Угол присоединения поэтажного отвода, град.	Максимальная пропускная способность невентилируемого канализационного стояка при наружном диаметре Ø110 мм (DN100), л/с						
рабочей части		Материал трубы и наружный диаметр поэтажного отвода, мм						
канализационного стояка, м		пп		ПВХ		SML		
		Ø50 мм	Ø110 мм	Ø50 мм	Ø110 мм	DN50	DN100	
1	45,0	7,37	8,31	7,23	8,15	7,07	8,05	
	87,5	6,54	7,47	6,42	7,32	6,27	7,23	
2	45,0	4,30	5,09	4,22	4,99	4,10	4,93	
	87,5	3,64	4,38	3,57	4,29	3,47	4,23	
3	45,0	2,87	3,51	2,82	3,44	2,73	3,40	
	87,5	2,37	2,94	2,33	2,88	2,25	2,84	
4	45,0	2,08	2,60	2,04	2,54	1,98	2,51	
	87,5	1,69	2,13	1,66	2,09	1,60	2,06	
5	45,0	1,59	2,01	1,56	1,97	1,51	1,94	
	87,5	1,27	1,63	1,25	1,60	1,21	1,58	
6	45,0	1,26	1,61	1,24	1,58	1,20	1,56	
	87,5	1,00	1,30	0,98	1,27	0,95	1,25	
7	45,0	1,03	1,33	1,01	1,30	0,98	1,28	
	87,5	0,81	1,06	0,80	1,04	0,77	1,02	
8	45,0	0,86	1,12	0,84	1,09	0,82	1,08	
	87,5	0,68	0,89	0,67	0,87	0,64	0,86	
9	45,0	0,73	0,96	0,72	0,94	0,69	0,92	
	87,5	0,57	0,75	0,56	0,74	0,54	0,73	
10 и более	45,0	0,69	0,90	0,68	0,89	0,67	0,89	
	87,5	0,54	0,71	0,54	0,70	0,52	0,70	

Примечание:

^{1.} В таблице приведены данные для труб ПП 110×2,7 мм; ПВХ 110×3,2 мм; SML 110×3,5 мм; ПП 50×1,8 мм; ПВХ 50×1.8 мм: SML 50×3.5 мм.

^{2.} При применении на канализации шумопоглощающих толстостенных труб данной таблицей пользоваться нельзя, так как расчет ведется по внутреннему диаметру трубопроводов.

 $d_{\text{отв}}$ — внутренний диаметр поэтажного отвода, м;

 $L_{c_{\tau}}$ – рабочая высота стояка, м.

19.5. При $L_{cm} \ge 90D_{cm}$ следует принимать $L_{cm} = 90D_{cm}$ ».

Подставив полученное значение максимально допустимой величины разрежения, равное 27 мм, в формулу, можем рассчитать максимальную пропускную способность вентилируемого канализационного стояка. Для удобства полученные результаты сведем в табл. 1.

При анализе расчетных данных табл. 1 можно сделать вывод, что применять вентилируемые канализационные стояки диаметром 50 мм при подключении к ним сантехприборов с высотой гидрозатвора, равной 30 мм, нельзя даже для двухэтажных зданий (например, расход от полностью заполненной мойки составляет 1 л/с)!

При определении пропускной способности невентилируемых стояков необходимо руководствоваться п. 19.6 СП 30.13330.2020: «При другой высоте гидравлических затворов величину разрежения в невентилируемом стояке следует определять по формуле:

$$\Delta \rho = 0.31 \cdot V_{cm}^{4.3}$$

где Δp – допустимая (максимальная) величина разрежения в стояке, мм вод. ст. (0,9h.);

 $V_{\rm cm}$ — скорость водовоздушной смеси, м/с, которую определяют по формуле:

$$V_{\rm cm} = \frac{Q_{\rm B} + q_{\rm S}}{\omega}$$

где $q_{\rm s}$ – расчетный расход стоков, м 3 /с; ω – площадь сечения стояка, м 2 ;

 $Q_{\rm B}$ – расход воздуха, эжектируемого (увлекаемого) в стояк движущимися в нем сверху вниз стоками, м³/с, следует определять по формуле:

$$Q_{\rm B} = \frac{13.8 \cdot q_{\rm s}^{0.333} D_{\rm cr}^{1.75} \left(\frac{D_{\rm cr}}{d_{\rm orm}}\right)^{0.12}}{(1 + \cos\alpha_{\rm o})^{0.177} \left(\frac{D_{\rm cr}}{L_{\rm cr}}\right)^{0.5}}$$

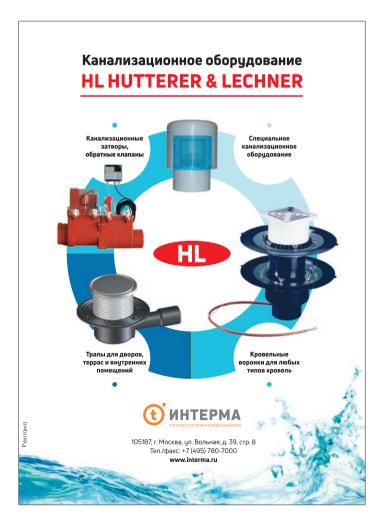

В этом случае для определения значений максимальной пропускной способности невентилируемого канализационного стояка (q_s) исходя из условия, что максимальное разрежение в стояке равно 27 мм водяного столба, воспользуемся методом итераций. Для удобства полученные результаты сведем в табл. 2.

Табл. 2 рассчитана только для стояков диаметром 110 мм (DN100). Следует обратить внимание, что для невентилируемого канализационного стояка из ПП или ПВХ высотой 5 м (два этажа) максимально допустимое разрежение, равное 27 мм, возникает при подключении только одного диктующего санитарно-технического прибора – унитаза (расчетный расход: 1,6 л/с).

Литература

- 1. СП 30.13330.2020 «Внутренний водопровод и канализация зданий».
- 2. Добромыслов А. Я. Расчет и конструирование систем канализации зданий. М.: Стройиздат, 1978
- СП 40-107-2003 «Проектирование, монтаж и эксплуатация систем канализации из полипропиленовых труб».
- 4. Добромыслов А. Я. Вентиляционные клапаны для канализационных стояков // Трубопроводы и экология. № 4. 2002.
- Технический каталог HL31/RUS. HL Hutterer & Lechner GmbH, 2325, Austria, Himberg, Brauhausgasse 3–5.

Окончание статьи в следующем номере.

